Discovery of ULBP6 as a Novel Immuno-Oncology Target Using Pleiotropic Signals from 23andMe’s Genetic and Health Survey Database

AACR April 8, 2024
Kim Gerrick, Ph.D.
Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, including statements regarding the future performance of 23andMe’s businesses in consumer genetics and therapeutics and the growth and potential of its proprietary research platform. All statements, other than statements of historical fact, included or incorporated in this presentation, including statements regarding 23andMe’s strategy, financial position, funding for continued operations, cash reserves, projected costs, plans, database growth, future collaborations, future development of therapeutic programs or products and objectives of management, are forward-looking statements. The words “believes,” “anticipates,” “estimates,” “plans,” “expects,” “intends,” “may,” “could,” “should,” “potential,” “likely,” “projects,” “continue,” “will,” “schedule,” and “would” or, in each case, their negative or other variations or comparable terminology, are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. These forward-looking statements are predictions based on 23andMe’s current expectations and projections about future events and various assumptions. 23andMe cannot guarantee that it will actually achieve the plans, intentions, or expectations disclosed in its forward-looking statements and you should not place undue reliance on 23andMe’s forward-looking statements. The forward-looking statements contained herein are also subject generally to other risks and uncertainties that are described from time to time in the Company’s filings with the Securities and Exchange Commission, including under Item 1A, “Risk Factors” in the Company’s most recent Annual Report on Form 10-K, as filed with the Securities and Exchange Commission, and as revised and updated by our Quarterly Reports on Form 10-Q and Current Reports on Form 8-K. These forward-looking statements involve a number of risks, uncertainties (many of which are beyond the control of 23andMe), or other assumptions that may cause actual results or performance to be materially different from those expressed or implied by these forward-looking statements. Investors are cautioned not to place undue reliance on any such forward-looking statements, which speak only as of the date they are made. Except as required by law, 23andMe does not undertake any obligation to update or revise any forward-looking statements whether as a result of new information, future events, or otherwise.
Leveraging Human Genetics to Guide Drug Discovery and Development

Drug development is inefficient

- 4.5 billion average cost of drug development\(^1\)
- ~90% failure rate of drugs in clinical development\(^2-3\)

Genetic evidence has a positive impact on clinical success

- Drugs with human genetic evidence are
 - enriched in approved drugs
 - 2x more likely to reach approval\(^4-6\)

\(^1\)Schlander, M. et al. *Pharmacoeconomics*. 2021
\(^2\)Thomas, D. et al. 2021
\(^3\)Dowden, H. et al. *Nat Rev Drug Discov*. 2019
The Power of Scale

23andMe Has the Largest Re-contactable Genetic and Phenotypic Database for Target Discovery in the World

- ~80% consent to research
- As of September 30, 2023

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism</td>
<td>1,728,000</td>
</tr>
<tr>
<td>Neurology</td>
<td>1,572,000</td>
</tr>
<tr>
<td>Auto-immune</td>
<td>986,000</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>565,000</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>479,000</td>
</tr>
<tr>
<td>Rare disease</td>
<td>7,700</td>
</tr>
<tr>
<td></td>
<td>6,200</td>
</tr>
<tr>
<td></td>
<td>4,300</td>
</tr>
</tbody>
</table>

And many more!
Human Genetics and Health Information Inform Multiple Aspects of Drug Discovery and Development

23andMe Customers and Research Participants

Germline Genetic and Health Survey Data

Genetic Analysis (GWAS and PheWAS)

Applications

Target ID

Indication Expansion

Safety Risks

Patient Selection

1 Structured surveys
GWAS and PheWAS are The Foundation of Genome Analysis

Single Nucleotide Polymorphism (SNP) Analysis of Germline Genome

Cases: GGCCAGCTGGACGAGG
Controls: GGCCAGCTGGATGAGG

*23andMe has >1000 medically-relevant phenotypes
23andMe’s Proprietary Immuno-Oncology (I/O) Signature Used to Identify Novel I/O Drug Targets

Immunological Diseases and Cancer: 2 Sides of the Same Coin

- **Immunological Diseases**
 - Immune activation and surveillance
 - Immune suppression and tolerance

- **Cancer**

Representative *CTLA4* I/O Signature

- **Variant 1**
 - Type I diabetes
 - Thyroid diseases
 - Celiac
 - RA
 - Psoriasis

- **Variant 2**
 - Squamous cell carcinoma
 - Basal cell carcinoma
 - Melanoma

Increased risk

Decreased risk
Discovery of ULBP6 as a Cancer Therapeutic Target Using 23andMe’s I/O Signature

ULBP6 identified as a potentially critical immune regulator

- Basal cell carcinoma
- Hashimoto’s
- Mosquito bite itch
- Alopecia areata
- Alopecia universalis

Decreased risk

Increased risk

Coding SNPs map to ULBP6

Cancer

Immune

Basal cell carcinoma

RAET1G

ULBP2

RAET1L

ULBP3

(ULBP6)

Position on chr6 (Mb)

Recombination rate (cM/Mb)

credible set (49 sites, 35.762kb)
Resistance Mechanism to T-cell Targeted Therapies Presents a Therapeutic Opportunity for NK cell Modulators

Anti-Tumor Immunity

NK cell\(^1\)
KIR
MHC I
ULBP6
NKG2D
Cytotoxic Mediators

Tumor cell

Immune Escape

NK cell\(^1\)
Soluble ULBP6
NKG2D
ULBP6

Tumor cell

\(^1\) T cell also express NKG2D
ULBP6 May Be a Critical Regulator of Anti-Tumor Immunity as the NKG2D Ligand with the Highest Affinity for NKG2D

ULBP6 has the highest binding affinity for NKG2D

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Binding affinity (K<sub>D</sub> nM ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULBP3</td>
<td>2.69 ± 0.01</td>
</tr>
<tr>
<td>ULBP2</td>
<td>1.262 ± 0.04</td>
</tr>
<tr>
<td>ULBP1</td>
<td>1.138 ± 0.02</td>
</tr>
<tr>
<td>MICB</td>
<td>1.105 ± 0.02</td>
</tr>
<tr>
<td>ULBP5</td>
<td>1.193 ± 0.04</td>
</tr>
<tr>
<td>MICA</td>
<td>1.183 ± 0.02</td>
</tr>
<tr>
<td>ULBP6</td>
<td>1.836 ± 0.01</td>
</tr>
</tbody>
</table>

*No binding with ULBP4

Soluble ULBP6 is highly immunosuppressive

Soluble ULBP6 promotes tumor cell growth

ULBP6 isoform 1
ULBP6 is Highly Expressed in Squamous Cell Carcinomas and a Subset of Adenocarcinomas

RAET1L (ULBP6) mRNA expression in TCGA

ULBP6 IHC

Melanoma

Lung squamous

Head & neck squamous

ULBP2 and 5 are also recognized due to high sequence homology and highly expressed in squamous cell carcinomas
Arrows = membranous staining
Targeting ULBP6 Is a Genetics-First Approach with Potential to Address I/O Resistance

- 23ME-01473, anti-ULBP6\(^1\) humanized monoclonal antibody has dual synergistic mechanisms of action (MoA) to fully unleash NK cell activity

- **MoA 1:** Block soluble ULBP6 to reinvigorate NKG2D axis

\(^1\)ULBP2 and 5 are also recognized due to high sequence homology
Targeting ULBP6 Is a Genetics-First Approach with Potential to Address I/O Resistance

- 23ME-01473, anti-ULBP6\(^1\) humanized monoclonal antibody has dual synergistic mechanisms of action (MoA) to fully unleash NK cell activity
 - **MoA 1:** Block soluble ULBP6 to reinvigorate NKG2D axis
 - **MoA 2:** Fc-enhanced effector function to induce ADCC
- 23ME-01473 is currently evaluated in patients with solid malignancies in a Phase 1 study

Check out Poster Abstract 2375 and https://therapeutics.23andme.com!

\(^1\)ULBP2 and 5 are also recognized due to high sequence homology
Thank you to 23andMe Therapeutics, Research, and Consumer teams, all our customers who participate in genetic research, and patients enrolled in our Phase 1 trial!